Emerging Themes in Lipid Metabolism: Insights for CVD and Diabetes

John P. Kane, M.D., Ph.D.
Professor of Medicine
Endocrinologist & Director, Adult Lipid Clinic
University of California, San Francisco

September 24, 2019
CVD – The Startling Statistics

• CVD affects approximately 121.5 million Americans (2016)
 – CHD is most common form of heart disease
 – CVD often results in heart attack
• Dyslipidemia affects more than 95 million Americans
• Healthcare costs exceed $351.2 billion in 2014 to 2015

Diabetes and CVD

• Current estimates show that:
 – More than 30.3 million Americans have diabetes\(^1\)
 – Prevalence* will increase 165% by 2050\(^2\)
• Diabetes is a CHD risk equivalent\(^2\)
 – Associated with \(\uparrow\) prevalence of CV risk factors
 (atherogenic dyslipidemia, hypertension)
• \textit{Up to 68\% of diabetic patients will die of CVD}

Coronary Mortality in Patients With and Without Diabetes Mellitus1

Adjusted for age, study year, body mass index, systolic blood pressure, total cholesterol, and smoking.
DM = diabetes mellitus; MI = myocardial infarction.
Mechanisms for Atherosclerosis

• Influx (LDL, TG)
• Inflammation (Cytokines, Lp(a))
• Efflux (pre-beta 1 HDL)
CHD Risk Increased With Elevated Triglyceride Levels: The Framingham Heart Study1

In a univariate analysis, the relationship between serum triglycerides and subsequent development of CAD was significant for all correlations in women, but only for the 30-year data in men.

1Castelli WP. \textit{Am J Cardiol.} 1992;70:3H–9H.
Metabolism of VLDL and LDL

Liver Parenchymal Cell

Golgi apparatus

Receptor

Lysosome

VLDL

TG

CE

LDL

Remnant

Peripheral Cell

Lysosome

Receptor

Capillary wall

Lipoprotein Lipase
Isolated Elevation of LDL

Genetic:
- Familial hypercholesterolemia
- Ligand-defective apoB100
- PCSK-9 gain of function
- ARH (Autosomal recessive hypercholesterolemia)
- Cyp 7-alpha deficiency
- LAL (Lysosomal acid lipase deficiency)

Secondary
- Hypothyroidism
- Early nephrosis
- Cholestasis
- Multiple myeloma
- Phytosterolemia
Secondary Causes of Hypertriglyceridemia

- Secondary causes of hypertriglyceridemia
- Diabetes/Insulin resistance/obesity
- Insulinopenia
- Alcohol
- Medications- tacrolimus, sirolimus, steroids, other
- Fructose
Emerging Therapy: PCSK9

- Proprotein convertase subtilisin/kexin type 9 binds to LDL receptors and increases their degradation, thus reducing the removal rate of LDL
- Gain of function mutations result in increased levels of LDL-C
- Loss of function mutations result in very low LDL-C
Mechanisms for Atherosclerosis

- Influx (LDL, TG)
- Inflammation (Cytokines, Lp(a))
- Efflux (pre-beta 1 HDL)
Chylomicrons in the Immune Defense

- Individuals with low triglyceride levels have greater mortality from sepsis
- Raising triglyceride levels improves survival
- Chylomicrons sequester endotoxins: the role of the thoracic duct
- ApoB-48 inhibits quorum sensing by Staphylococcus aureus
- Chylomicrons increase leukocyte activation
CANTOS: 31% Reduction in Cardiovascular Mortality and All-Cause Mortality Among Participants with Robust Inhibition of the Inflammatory Response

CANTOS - Cardiovascular Mortality

CANTOS - All Cause Mortality

35 - 40% reductions in hsCRP and IL-6
No change in LDLC

Ridker PM. Circulation 2018
Lp(a)

• When elevated Lp(a) is associated with the atherogenic lipoprotein profile (low HDL$_2$, elevated dense LDL, IDL, dense VLDL and VLDL), the increased risk is 25.

• If two or more non-lipid risk factors are also present (hypertension, diabetes, cigarette smoking, or high total homocysteine) the increased risk is 122.
High Lp(a) Levels Were Associated With Increased CHD Risk: Meta-Analysis Results

<table>
<thead>
<tr>
<th>Study</th>
<th>CHD Cases, No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reykjavik cohort (present study)</td>
<td>2,047</td>
</tr>
<tr>
<td>Olmsted County Study</td>
<td>1,848</td>
</tr>
<tr>
<td>ARIC</td>
<td>725</td>
</tr>
<tr>
<td>Cardiovascular Health Study</td>
<td>683</td>
</tr>
<tr>
<td>GRIPS</td>
<td>299</td>
</tr>
<tr>
<td>Physicians Health Study</td>
<td>296</td>
</tr>
<tr>
<td>WOSCOPS</td>
<td>293</td>
</tr>
<tr>
<td>PRIME Study</td>
<td>288</td>
</tr>
<tr>
<td>Dubbo Study</td>
<td>278</td>
</tr>
<tr>
<td>Caerphilly Study</td>
<td>261</td>
</tr>
<tr>
<td>WHS</td>
<td>239</td>
</tr>
<tr>
<td>Lip Res Clin Prev Trial</td>
<td>233</td>
</tr>
<tr>
<td>BUPA</td>
<td>229</td>
</tr>
<tr>
<td>Nurses Health Study</td>
<td>228</td>
</tr>
<tr>
<td>North Karelia Project</td>
<td>191</td>
</tr>
<tr>
<td>Strong Heart Study</td>
<td>183</td>
</tr>
<tr>
<td>Framingham Heart Study</td>
<td>174</td>
</tr>
<tr>
<td>Edinburgh Artery Study</td>
<td>166</td>
</tr>
<tr>
<td>Helsinki Heart Study</td>
<td>138</td>
</tr>
<tr>
<td>Stanford Five-City Project</td>
<td>134</td>
</tr>
<tr>
<td>Framingham Offspring Cohort</td>
<td>129</td>
</tr>
<tr>
<td>Bruneck Study</td>
<td>125</td>
</tr>
<tr>
<td>Northwick Park Heart Study II</td>
<td>121</td>
</tr>
<tr>
<td>Quebec Cardiovascular Study</td>
<td>116</td>
</tr>
<tr>
<td>MRFIT</td>
<td>98</td>
</tr>
<tr>
<td>FINRISK '92</td>
<td>92</td>
</tr>
<tr>
<td>MONICA-Glostrup Cohorts</td>
<td>74</td>
</tr>
<tr>
<td>MONICA-VIP Cohorts</td>
<td>62</td>
</tr>
<tr>
<td>Guernsey</td>
<td>51</td>
</tr>
<tr>
<td>PROCAM</td>
<td>33</td>
</tr>
<tr>
<td>Gothenburg 1933</td>
<td>26</td>
</tr>
</tbody>
</table>

Total: 9,870

Odds ratios for CHD (top third vs bottom third of the baseline Lp(a) distribution) in each of 31 published prospective studies of Lp(a) in general populations. Lp(a) = lipoprotein(a)

Lp(a) Lipoprotein

NH₂

[]

n

IV

IV

SS

IV

V

Protease

Apo B-100

• When elevated Lp(a) is associated with the atherogenic lipoprotein profile (low HDL2, elevated dense LDL, IDL, dense VLDL and VLDL), the increased risk is 25.

• If two or more non-lipid risk factors are also present (hypertension, diabetes, cigarette smoking, or high total homocysteine) the increased risk is 122.
Mechanisms for Atherosclerosis

- Influx (LDL, TG)
- Inflammation (Cytokines, Lp(a))
- Efflux (pre-beta 1 HDL)
HDL: The Changing Landscape

- Total HDL cholesterol levels do not reflect risk in many individuals
- HDL can vary two-fold in its ability to promote efflux
- The ability to efflux cholesterol from the artery wall can vary widely
- The level of prebeta-1 HDL is an independent indicator of the rate of efflux
- Prebeta-1 HDL is a powerful and independent indicator of risk of MI
- Many other properties of HDL may be of importance to risk
HDL Sequesters Endotoxins

Gram Negative Bacterium

Endotoxin (LPS)

Endotoxin binding protein
Thank You

Questions?

John P. Kane, M.D., Ph.D.
Professor of Medicine
Endocrinologist & Director, Adult Lipid Clinic
University of California, San Francisco